cpu.h 9.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354
  1. /* CPU family header for lm32bf.
  2. THIS FILE IS MACHINE GENERATED WITH CGEN.
  3. Copyright 1996-2022 Free Software Foundation, Inc.
  4. This file is part of the GNU simulators.
  5. This file is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 3, or (at your option)
  8. any later version.
  9. It is distributed in the hope that it will be useful, but WITHOUT
  10. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  11. or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
  12. License for more details.
  13. You should have received a copy of the GNU General Public License along
  14. with this program; if not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #ifndef CPU_LM32BF_H
  17. #define CPU_LM32BF_H
  18. /* Maximum number of instructions that are fetched at a time.
  19. This is for LIW type instructions sets (e.g. m32r). */
  20. #define MAX_LIW_INSNS 1
  21. /* Maximum number of instructions that can be executed in parallel. */
  22. #define MAX_PARALLEL_INSNS 1
  23. /* The size of an "int" needed to hold an instruction word.
  24. This is usually 32 bits, but some architectures needs 64 bits. */
  25. typedef CGEN_INSN_INT CGEN_INSN_WORD;
  26. #include "cgen-engine.h"
  27. /* CPU state information. */
  28. typedef struct {
  29. /* Hardware elements. */
  30. struct {
  31. /* Program counter */
  32. USI h_pc;
  33. #define GET_H_PC() CPU (h_pc)
  34. #define SET_H_PC(x) (CPU (h_pc) = (x))
  35. /* General purpose registers */
  36. SI h_gr[32];
  37. #define GET_H_GR(a1) CPU (h_gr)[a1]
  38. #define SET_H_GR(a1, x) (CPU (h_gr)[a1] = (x))
  39. /* Control and status registers */
  40. SI h_csr[32];
  41. #define GET_H_CSR(a1) CPU (h_csr)[a1]
  42. #define SET_H_CSR(a1, x) (CPU (h_csr)[a1] = (x))
  43. } hardware;
  44. #define CPU_CGEN_HW(cpu) (& (cpu)->cpu_data.hardware)
  45. } LM32BF_CPU_DATA;
  46. /* Cover fns for register access. */
  47. USI lm32bf_h_pc_get (SIM_CPU *);
  48. void lm32bf_h_pc_set (SIM_CPU *, USI);
  49. SI lm32bf_h_gr_get (SIM_CPU *, UINT);
  50. void lm32bf_h_gr_set (SIM_CPU *, UINT, SI);
  51. SI lm32bf_h_csr_get (SIM_CPU *, UINT);
  52. void lm32bf_h_csr_set (SIM_CPU *, UINT, SI);
  53. /* These must be hand-written. */
  54. extern CPUREG_FETCH_FN lm32bf_fetch_register;
  55. extern CPUREG_STORE_FN lm32bf_store_register;
  56. typedef struct {
  57. int empty;
  58. } MODEL_LM32_DATA;
  59. /* Instruction argument buffer. */
  60. union sem_fields {
  61. struct { /* no operands */
  62. int empty;
  63. } sfmt_empty;
  64. struct { /* */
  65. IADDR i_call;
  66. } sfmt_bi;
  67. struct { /* */
  68. UINT f_csr;
  69. UINT f_r1;
  70. } sfmt_wcsr;
  71. struct { /* */
  72. UINT f_csr;
  73. UINT f_r2;
  74. } sfmt_rcsr;
  75. struct { /* */
  76. IADDR i_branch;
  77. UINT f_r0;
  78. UINT f_r1;
  79. } sfmt_be;
  80. struct { /* */
  81. UINT f_r0;
  82. UINT f_r1;
  83. UINT f_uimm;
  84. } sfmt_andi;
  85. struct { /* */
  86. INT f_imm;
  87. UINT f_r0;
  88. UINT f_r1;
  89. } sfmt_addi;
  90. struct { /* */
  91. UINT f_r0;
  92. UINT f_r1;
  93. UINT f_r2;
  94. UINT f_user;
  95. } sfmt_user;
  96. #if WITH_SCACHE_PBB
  97. /* Writeback handler. */
  98. struct {
  99. /* Pointer to argbuf entry for insn whose results need writing back. */
  100. const struct argbuf *abuf;
  101. } write;
  102. /* x-before handler */
  103. struct {
  104. /*const SCACHE *insns[MAX_PARALLEL_INSNS];*/
  105. int first_p;
  106. } before;
  107. /* x-after handler */
  108. struct {
  109. int empty;
  110. } after;
  111. /* This entry is used to terminate each pbb. */
  112. struct {
  113. /* Number of insns in pbb. */
  114. int insn_count;
  115. /* Next pbb to execute. */
  116. SCACHE *next;
  117. SCACHE *branch_target;
  118. } chain;
  119. #endif
  120. };
  121. /* The ARGBUF struct. */
  122. struct argbuf {
  123. /* These are the baseclass definitions. */
  124. IADDR addr;
  125. const IDESC *idesc;
  126. char trace_p;
  127. char profile_p;
  128. /* ??? Temporary hack for skip insns. */
  129. char skip_count;
  130. char unused;
  131. /* cpu specific data follows */
  132. union sem semantic;
  133. int written;
  134. union sem_fields fields;
  135. };
  136. /* A cached insn.
  137. ??? SCACHE used to contain more than just argbuf. We could delete the
  138. type entirely and always just use ARGBUF, but for future concerns and as
  139. a level of abstraction it is left in. */
  140. struct scache {
  141. struct argbuf argbuf;
  142. };
  143. /* Macros to simplify extraction, reading and semantic code.
  144. These define and assign the local vars that contain the insn's fields. */
  145. #define EXTRACT_IFMT_EMPTY_VARS \
  146. unsigned int length;
  147. #define EXTRACT_IFMT_EMPTY_CODE \
  148. length = 0; \
  149. #define EXTRACT_IFMT_ADD_VARS \
  150. UINT f_opcode; \
  151. UINT f_r0; \
  152. UINT f_r1; \
  153. UINT f_r2; \
  154. UINT f_resv0; \
  155. unsigned int length;
  156. #define EXTRACT_IFMT_ADD_CODE \
  157. length = 4; \
  158. f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  159. f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  160. f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  161. f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  162. f_resv0 = EXTRACT_LSB0_UINT (insn, 32, 10, 11); \
  163. #define EXTRACT_IFMT_ADDI_VARS \
  164. UINT f_opcode; \
  165. UINT f_r0; \
  166. UINT f_r1; \
  167. INT f_imm; \
  168. unsigned int length;
  169. #define EXTRACT_IFMT_ADDI_CODE \
  170. length = 4; \
  171. f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  172. f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  173. f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  174. f_imm = EXTRACT_LSB0_SINT (insn, 32, 15, 16); \
  175. #define EXTRACT_IFMT_ANDI_VARS \
  176. UINT f_opcode; \
  177. UINT f_r0; \
  178. UINT f_r1; \
  179. UINT f_uimm; \
  180. unsigned int length;
  181. #define EXTRACT_IFMT_ANDI_CODE \
  182. length = 4; \
  183. f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  184. f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  185. f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  186. f_uimm = EXTRACT_LSB0_UINT (insn, 32, 15, 16); \
  187. #define EXTRACT_IFMT_ANDHII_VARS \
  188. UINT f_opcode; \
  189. UINT f_r0; \
  190. UINT f_r1; \
  191. UINT f_uimm; \
  192. unsigned int length;
  193. #define EXTRACT_IFMT_ANDHII_CODE \
  194. length = 4; \
  195. f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  196. f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  197. f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  198. f_uimm = EXTRACT_LSB0_UINT (insn, 32, 15, 16); \
  199. #define EXTRACT_IFMT_B_VARS \
  200. UINT f_opcode; \
  201. UINT f_r0; \
  202. UINT f_r1; \
  203. UINT f_r2; \
  204. UINT f_resv0; \
  205. unsigned int length;
  206. #define EXTRACT_IFMT_B_CODE \
  207. length = 4; \
  208. f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  209. f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  210. f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  211. f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  212. f_resv0 = EXTRACT_LSB0_UINT (insn, 32, 10, 11); \
  213. #define EXTRACT_IFMT_BI_VARS \
  214. UINT f_opcode; \
  215. SI f_call; \
  216. unsigned int length;
  217. #define EXTRACT_IFMT_BI_CODE \
  218. length = 4; \
  219. f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  220. f_call = ((pc) + (((SI) (((EXTRACT_LSB0_SINT (insn, 32, 25, 26)) << (6))) >> (4)))); \
  221. #define EXTRACT_IFMT_BE_VARS \
  222. UINT f_opcode; \
  223. UINT f_r0; \
  224. UINT f_r1; \
  225. SI f_branch; \
  226. unsigned int length;
  227. #define EXTRACT_IFMT_BE_CODE \
  228. length = 4; \
  229. f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  230. f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  231. f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  232. f_branch = ((pc) + (((SI) (((EXTRACT_LSB0_SINT (insn, 32, 15, 16)) << (16))) >> (14)))); \
  233. #define EXTRACT_IFMT_ORI_VARS \
  234. UINT f_opcode; \
  235. UINT f_r0; \
  236. UINT f_r1; \
  237. UINT f_uimm; \
  238. unsigned int length;
  239. #define EXTRACT_IFMT_ORI_CODE \
  240. length = 4; \
  241. f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  242. f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  243. f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  244. f_uimm = EXTRACT_LSB0_UINT (insn, 32, 15, 16); \
  245. #define EXTRACT_IFMT_RCSR_VARS \
  246. UINT f_opcode; \
  247. UINT f_csr; \
  248. UINT f_r1; \
  249. UINT f_r2; \
  250. UINT f_resv0; \
  251. unsigned int length;
  252. #define EXTRACT_IFMT_RCSR_CODE \
  253. length = 4; \
  254. f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  255. f_csr = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  256. f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  257. f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  258. f_resv0 = EXTRACT_LSB0_UINT (insn, 32, 10, 11); \
  259. #define EXTRACT_IFMT_SEXTB_VARS \
  260. UINT f_opcode; \
  261. UINT f_r0; \
  262. UINT f_r1; \
  263. UINT f_r2; \
  264. UINT f_resv0; \
  265. unsigned int length;
  266. #define EXTRACT_IFMT_SEXTB_CODE \
  267. length = 4; \
  268. f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  269. f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  270. f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  271. f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  272. f_resv0 = EXTRACT_LSB0_UINT (insn, 32, 10, 11); \
  273. #define EXTRACT_IFMT_USER_VARS \
  274. UINT f_opcode; \
  275. UINT f_r0; \
  276. UINT f_r1; \
  277. UINT f_r2; \
  278. UINT f_user; \
  279. unsigned int length;
  280. #define EXTRACT_IFMT_USER_CODE \
  281. length = 4; \
  282. f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  283. f_r0 = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  284. f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  285. f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  286. f_user = EXTRACT_LSB0_UINT (insn, 32, 10, 11); \
  287. #define EXTRACT_IFMT_WCSR_VARS \
  288. UINT f_opcode; \
  289. UINT f_csr; \
  290. UINT f_r1; \
  291. UINT f_r2; \
  292. UINT f_resv0; \
  293. unsigned int length;
  294. #define EXTRACT_IFMT_WCSR_CODE \
  295. length = 4; \
  296. f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  297. f_csr = EXTRACT_LSB0_UINT (insn, 32, 25, 5); \
  298. f_r1 = EXTRACT_LSB0_UINT (insn, 32, 20, 5); \
  299. f_r2 = EXTRACT_LSB0_UINT (insn, 32, 15, 5); \
  300. f_resv0 = EXTRACT_LSB0_UINT (insn, 32, 10, 11); \
  301. #define EXTRACT_IFMT_BREAK_VARS \
  302. UINT f_opcode; \
  303. UINT f_exception; \
  304. unsigned int length;
  305. #define EXTRACT_IFMT_BREAK_CODE \
  306. length = 4; \
  307. f_opcode = EXTRACT_LSB0_UINT (insn, 32, 31, 6); \
  308. f_exception = EXTRACT_LSB0_UINT (insn, 32, 25, 26); \
  309. /* Collection of various things for the trace handler to use. */
  310. typedef struct trace_record {
  311. IADDR pc;
  312. /* FIXME:wip */
  313. } TRACE_RECORD;
  314. #endif /* CPU_LM32BF_H */