// -*- C++ -*- // Testing allocator for the C++ library testsuite. // // Copyright (C) 2002-2022 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 3, or (at your option) // any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING3. If not see // . // // This file provides an test instrumentation allocator that can be // used to verify allocation functionality of standard library // containers. 2002.11.25 smw #ifndef _GLIBCXX_TESTSUITE_ALLOCATOR_H #define _GLIBCXX_TESTSUITE_ALLOCATOR_H #include #include #include #include #if __cplusplus >= 201703L # include # include #endif #if __cplusplus >= 201103L # include namespace unord = std; #else # include namespace unord = std::tr1; #endif namespace __gnu_test { // A common API for calling max_size() on an allocator in any -std mode. template typename A::size_type max_size(const A& a) { #if __cplusplus >= 201103L return std::allocator_traits::max_size(a); #else return a.max_size(); #endif } class tracker_allocator_counter { public: typedef std::size_t size_type; static void allocate(size_type blocksize) { allocationCount_ += blocksize; } static void construct() { ++constructCount_; } static void destroy() { ++destructCount_; } static void deallocate(size_type blocksize) { deallocationCount_ += blocksize; } static size_type get_allocation_count() { return allocationCount_; } static size_type get_deallocation_count() { return deallocationCount_; } static int get_construct_count() { return constructCount_; } static int get_destruct_count() { return destructCount_; } static void reset() { allocationCount_ = 0; deallocationCount_ = 0; constructCount_ = 0; destructCount_ = 0; } private: static size_type allocationCount_; static size_type deallocationCount_; static int constructCount_; static int destructCount_; }; // Helper to detect inconsistency between type used to instantiate an // allocator and the underlying allocator value_type. template struct check_consistent_alloc_value_type; template struct check_consistent_alloc_value_type { typedef T value_type; }; // An allocator facade that intercepts allocate/deallocate/construct/destroy // calls and track them through the tracker_allocator_counter class. This // class is templated on the target object type, but tracker isn't. template > class tracker_allocator : public Alloc { private: typedef tracker_allocator_counter counter_type; typedef __gnu_cxx::__alloc_traits AllocTraits; public: typedef typename check_consistent_alloc_value_type::value_type value_type; typedef typename AllocTraits::pointer pointer; typedef typename AllocTraits::size_type size_type; template struct rebind { typedef tracker_allocator::other> other; }; #if __cplusplus >= 201103L tracker_allocator() = default; tracker_allocator(const tracker_allocator&) = default; tracker_allocator(tracker_allocator&&) = default; tracker_allocator& operator=(const tracker_allocator&) = default; tracker_allocator& operator=(tracker_allocator&&) = default; // Perfect forwarding constructor. template tracker_allocator(_Args&&... __args) : Alloc(std::forward<_Args>(__args)...) { } #else tracker_allocator() { } tracker_allocator(const tracker_allocator&) { } ~tracker_allocator() { } #endif template tracker_allocator(const tracker_allocator::other>& alloc) _GLIBCXX_USE_NOEXCEPT : Alloc(alloc) { } pointer allocate(size_type n, const void* = 0) { pointer p = AllocTraits::allocate(*this, n); counter_type::allocate(n * sizeof(T)); return p; } #if __cplusplus >= 201103L template void construct(U* p, Args&&... args) { AllocTraits::construct(*this, p, std::forward(args)...); counter_type::construct(); } template void destroy(U* p) { AllocTraits::destroy(*this, p); counter_type::destroy(); } #else void construct(pointer p, const T& value) { AllocTraits::construct(*this, p, value); counter_type::construct(); } void destroy(pointer p) { AllocTraits::destroy(*this, p); counter_type::destroy(); } #endif void deallocate(pointer p, size_type num) { counter_type::deallocate(num * sizeof(T)); AllocTraits::deallocate(*this, p, num); } // Implement swap for underlying allocators that might need it. friend inline void swap(tracker_allocator& a, tracker_allocator& b) { using std::swap; Alloc& aa = a; Alloc& ab = b; swap(aa, ab); } }; template bool operator==(const tracker_allocator& lhs, const tracker_allocator& rhs) throw() { const Alloc1& alloc1 = lhs; const Alloc2& alloc2 = rhs; return alloc1 == alloc2; } template bool operator!=(const tracker_allocator& lhs, const tracker_allocator& rhs) throw() { return !(lhs == rhs); } bool check_construct_destroy(const char* tag, int expected_c, int expected_d); template bool check_deallocate_null() { // Let's not core here... Alloc a; a.deallocate(0, 1); a.deallocate(0, 10); return true; } #if __cpp_exceptions template bool check_allocate_max_size() { Alloc a; try { (void) a.allocate(__gnu_test::max_size(a) + 1); } catch(std::bad_alloc&) { return true; } catch(...) { throw; } throw; } #endif // A simple allocator which can be constructed endowed of a given // "personality" (an integer), queried in operator== to simulate the // behavior of realworld "unequal" allocators (i.e., not exploiting // the provision in 20.1.5/4, first bullet). A global unordered_map, // filled at allocation time with (pointer, personality) pairs, is // then consulted to enforce the requirements in Table 32 about // deallocation vs allocator equality. Note that this allocator is // swappable, not copy assignable, consistently with Option 3 of DR 431 // (see N1599). struct uneq_allocator_base { typedef unord::unordered_map map_type; // Avoid static initialization troubles and/or bad interactions // with tests linking testsuite_allocator.o and playing globally // with operator new/delete. static map_type& get_map() { static map_type alloc_map; return alloc_map; } }; template > class uneq_allocator : private uneq_allocator_base, public Alloc { typedef __gnu_cxx::__alloc_traits AllocTraits; Alloc& base() { return *this; } const Alloc& base() const { return *this; } void swap_base(Alloc& b) { using std::swap; swap(b, this->base()); } public: typedef typename check_consistent_alloc_value_type::value_type value_type; typedef typename AllocTraits::size_type size_type; typedef typename AllocTraits::pointer pointer; #if __cplusplus >= 201103L typedef std::true_type propagate_on_container_swap; typedef std::false_type is_always_equal; #endif template struct rebind { typedef uneq_allocator::other> other; }; uneq_allocator() _GLIBCXX_USE_NOEXCEPT : personality(0) { } uneq_allocator(int person) _GLIBCXX_USE_NOEXCEPT : personality(person) { } #if __cplusplus >= 201103L uneq_allocator(const uneq_allocator&) = default; uneq_allocator(uneq_allocator&&) = default; #endif template uneq_allocator(const uneq_allocator::other>& b) _GLIBCXX_USE_NOEXCEPT : personality(b.get_personality()) { } ~uneq_allocator() _GLIBCXX_USE_NOEXCEPT { } int get_personality() const { return personality; } pointer allocate(size_type n, const void* = 0) { pointer p = AllocTraits::allocate(*this, n); try { get_map().insert(map_type::value_type(reinterpret_cast(p), personality)); } catch(...) { AllocTraits::deallocate(*this, p, n); __throw_exception_again; } return p; } void deallocate(pointer p, size_type n) { VERIFY( p ); map_type::iterator it = get_map().find(reinterpret_cast(p)); VERIFY( it != get_map().end() ); // Enforce requirements in Table 32 about deallocation vs // allocator equality. VERIFY( it->second == personality ); get_map().erase(it); AllocTraits::deallocate(*this, p, n); } #if __cplusplus >= 201103L // Not copy assignable... uneq_allocator& operator=(const uneq_allocator&) = delete; // ... but still moveable if base allocator is. uneq_allocator& operator=(uneq_allocator&&) = default; #else private: // Not assignable... uneq_allocator& operator=(const uneq_allocator&); #endif private: // ... yet swappable! friend inline void swap(uneq_allocator& a, uneq_allocator& b) { std::swap(a.personality, b.personality); a.swap_base(b); } template friend inline bool operator==(const uneq_allocator& a, const uneq_allocator::other>& b) { return a.personality == b.personality; } template friend inline bool operator!=(const uneq_allocator& a, const uneq_allocator::other>& b) { return !(a == b); } int personality; }; #if __cplusplus >= 201103L // An uneq_allocator which can be used to test allocator propagation. template> class propagating_allocator : public uneq_allocator { typedef __gnu_cxx::__alloc_traits AllocTraits; typedef uneq_allocator base_alloc; base_alloc& base() { return *this; } const base_alloc& base() const { return *this; } void swap_base(base_alloc& b) { swap(b, this->base()); } typedef std::integral_constant trait_type; public: // default allocator_traits::rebind_alloc would select // uneq_allocator::rebind so we must define rebind here template struct rebind { typedef propagating_allocator::other> other; }; propagating_allocator(int i) noexcept : base_alloc(i) { } template propagating_allocator(const propagating_allocator::other>& a) noexcept : base_alloc(a) { } propagating_allocator() noexcept = default; propagating_allocator(const propagating_allocator&) noexcept = default; propagating_allocator& operator=(const propagating_allocator& a) noexcept { static_assert(Propagate, "assigning propagating_allocator"); propagating_allocator(a).swap_base(*this); return *this; } template propagating_allocator& operator=(const propagating_allocator& a) noexcept { static_assert(P2, "assigning propagating_allocator"); propagating_allocator(a).swap_base(*this); return *this; } // postcondition: LWG2593 a.get_personality() un-changed. propagating_allocator(propagating_allocator&& a) noexcept : base_alloc(std::move(a.base())) { } // postcondition: LWG2593 a.get_personality() un-changed propagating_allocator& operator=(propagating_allocator&& a) noexcept { propagating_allocator(std::move(a)).swap_base(*this); return *this; } typedef trait_type propagate_on_container_copy_assignment; typedef trait_type propagate_on_container_move_assignment; typedef trait_type propagate_on_container_swap; propagating_allocator select_on_container_copy_construction() const { return Propagate ? *this : propagating_allocator(); } }; // Class template supporting the minimal interface that satisfies the // Allocator requirements, from example in [allocator.requirements] template struct SimpleAllocator { typedef Tp value_type; constexpr SimpleAllocator() noexcept { } template SimpleAllocator(const SimpleAllocator&) { } Tp *allocate(std::size_t n) { return std::allocator().allocate(n); } void deallocate(Tp *p, std::size_t n) { std::allocator().deallocate(p, n); } }; template bool operator==(const SimpleAllocator&, const SimpleAllocator&) { return true; } template bool operator!=(const SimpleAllocator&, const SimpleAllocator&) { return false; } template struct default_init_allocator { using value_type = T; default_init_allocator() = default; template default_init_allocator(const default_init_allocator& a) : state(a.state) { } T* allocate(std::size_t n) { return std::allocator().allocate(n); } void deallocate(T* p, std::size_t n) { std::allocator().deallocate(p, n); } int state; }; template bool operator==(const default_init_allocator& t, const default_init_allocator& u) { return t.state == u.state; } template bool operator!=(const default_init_allocator& t, const default_init_allocator& u) { return !(t == u); } #endif template struct ExplicitConsAlloc : std::allocator { ExplicitConsAlloc() { } template explicit ExplicitConsAlloc(const ExplicitConsAlloc&) { } template struct rebind { typedef ExplicitConsAlloc other; }; }; #if __cplusplus >= 201103L template class CustomPointerAlloc : public std::allocator { template> using Ptr = __gnu_cxx::_Pointer_adapter; public: CustomPointerAlloc() = default; template CustomPointerAlloc(const CustomPointerAlloc&) { } template struct rebind { typedef CustomPointerAlloc other; }; typedef Ptr pointer; typedef Ptr const_pointer; typedef Ptr void_pointer; typedef Ptr const_void_pointer; pointer allocate(std::size_t n, const_void_pointer = {}) { return pointer(std::allocator::allocate(n)); } void deallocate(pointer p, std::size_t n) { std::allocator::deallocate(std::addressof(*p), n); } }; // A class type meeting *only* the Cpp17NullablePointer requirements. // Can be used as a base class for fancy pointers (like PointerBase, below) // or to wrap a built-in pointer type to remove operations not required // by the Cpp17NullablePointer requirements (dereference, increment etc.) template struct NullablePointer { // N.B. default constructor does not initialize value NullablePointer() = default; NullablePointer(std::nullptr_t) noexcept : value() { } explicit operator bool() const noexcept { return value != nullptr; } friend inline bool operator==(NullablePointer lhs, NullablePointer rhs) noexcept { return lhs.value == rhs.value; } friend inline bool operator!=(NullablePointer lhs, NullablePointer rhs) noexcept { return lhs.value != rhs.value; } protected: explicit NullablePointer(Ptr p) noexcept : value(p) { } Ptr value; }; // NullablePointer is an empty type that models Cpp17NullablePointer. template<> struct NullablePointer { NullablePointer() = default; NullablePointer(std::nullptr_t) noexcept { } explicit NullablePointer(const volatile void*) noexcept { } explicit operator bool() const noexcept { return false; } friend inline bool operator==(NullablePointer, NullablePointer) noexcept { return true; } friend inline bool operator!=(NullablePointer, NullablePointer) noexcept { return false; } }; // Utility for use as CRTP base class of custom pointer types template struct PointerBase : NullablePointer { typedef T element_type; // typedefs for iterator_traits typedef T value_type; typedef std::ptrdiff_t difference_type; typedef std::random_access_iterator_tag iterator_category; typedef Derived pointer; typedef T& reference; using NullablePointer::NullablePointer; // Public (but explicit) constructor from raw pointer: explicit PointerBase(T* p) noexcept : NullablePointer(p) { } template(std::declval()))> PointerBase(const PointerBase& p) : NullablePointer(p.operator->()) { } T& operator*() const { return *this->value; } T* operator->() const { return this->value; } T& operator[](difference_type n) const { return this->value[n]; } Derived& operator++() { ++this->value; return derived(); } Derived& operator--() { --this->value; return derived(); } Derived operator++(int) { return Derived(this->value++); } Derived operator--(int) { return Derived(this->value--); } Derived& operator+=(difference_type n) { this->value += n; return derived(); } Derived& operator-=(difference_type n) { this->value -= n; return derived(); } Derived operator+(difference_type n) const { Derived p(derived()); return p += n; } Derived operator-(difference_type n) const { Derived p(derived()); return p -= n; } private: friend std::ptrdiff_t operator-(PointerBase l, PointerBase r) { return l.value - r.value; } Derived& derived() { return static_cast(*this); } const Derived& derived() const { return static_cast(*this); } }; // implementation for pointer-to-void specializations template struct PointerBase_void : NullablePointer { typedef T element_type; // typedefs for iterator_traits typedef T value_type; typedef std::ptrdiff_t difference_type; typedef std::random_access_iterator_tag iterator_category; using NullablePointer::NullablePointer; T* operator->() const { return this->value; } template(std::declval()))> PointerBase_void(const PointerBase& p) : NullablePointer(p.operator->()) { } }; template struct PointerBase : PointerBase_void { using PointerBase_void::PointerBase_void; typedef Derived pointer; }; template struct PointerBase : PointerBase_void { using PointerBase_void::PointerBase_void; typedef Derived pointer; }; #endif // C++11 #if __cplusplus >= 201703L #if __cpp_aligned_new // A concrete memory_resource, with error checking. class memory_resource : public std::pmr::memory_resource { public: memory_resource() : lists(new allocation_lists) { } memory_resource(const memory_resource& r) noexcept : lists(r.lists) { lists->refcount++; } memory_resource& operator=(const memory_resource&) = delete; ~memory_resource() { if (lists->refcount-- == 1) delete lists; // last one out turns out the lights } struct bad_size { }; struct bad_alignment { }; struct bad_address { }; // Deallocate everything (moving the tracking info to the freed list) void deallocate_everything() { while (lists->active) { auto a = lists->active; // Intentionally virtual dispatch, to inform derived classes: this->do_deallocate(a->p, a->bytes, a->alignment); } } // Clear the freed list void forget_freed_allocations() { lists->forget_allocations(lists->freed); } // Count how many allocations have been done and not freed. std::size_t number_of_active_allocations() const noexcept { std::size_t n = 0; for (auto a = lists->active; a != nullptr; a = a->next) ++n; return n; } protected: void* do_allocate(std::size_t bytes, std::size_t alignment) override { // TODO perform a single allocation and put the allocation struct // in the buffer using placement new? It means deallocation won't // actually return memory to the OS, as it will stay in lists->freed. // // TODO adjust the returned pointer to be minimally aligned? // e.g. if alignment==1 don't return something aligned to 2 bytes. // Maybe not worth it, at least monotonic_buffer_resource will // never ask upstream for anything with small alignment. void* p = ::operator new(bytes, std::align_val_t(alignment)); lists->active = new allocation{p, bytes, alignment, lists->active}; return p; } void do_deallocate(void* p, std::size_t bytes, std::size_t alignment) override { allocation** aptr = &lists->active; while (*aptr) { allocation* a = *aptr; if (p == a->p) { if (bytes != a->bytes) _S_throw(); if (alignment != a->alignment) _S_throw(); #if __cpp_sized_deallocation ::operator delete(p, bytes, std::align_val_t(alignment)); #else ::operator delete(p, std::align_val_t(alignment)); #endif *aptr = a->next; a->next = lists->freed; lists->freed = a; return; } aptr = &a->next; } _S_throw(); } bool do_is_equal(const std::pmr::memory_resource& r) const noexcept override { #if __cpp_rtti // Equality is determined by sharing the same allocation_lists object. if (auto p = dynamic_cast(&r)) return p->lists == lists; #else if (this == &r) // Is this the best we can do without RTTI? return true; #endif return false; } private: template static void _S_throw() { #if __cpp_exceptions throw E(); #else __builtin_abort(); #endif } struct allocation { void* p; std::size_t bytes; std::size_t alignment; allocation* next; }; // Maintain list of allocated blocks and list of freed blocks. // Copies of this memory_resource share the same ref-counted lists. struct allocation_lists { unsigned refcount = 1; allocation* active = nullptr; allocation* freed = nullptr; void forget_allocations(allocation*& list) { while (list) { auto p = list; list = list->next; delete p; } } ~allocation_lists() { forget_allocations(active); // Anything in this list is a leak! forget_allocations(freed); } }; allocation_lists* lists; }; #endif // aligned-new // Set the default resource, and restore the previous one on destruction. struct default_resource_mgr { explicit default_resource_mgr(std::pmr::memory_resource* r) : prev(std::pmr::set_default_resource(r)) { } ~default_resource_mgr() { std::pmr::set_default_resource(prev); } std::pmr::memory_resource* prev; }; #endif // C++17 } // namespace __gnu_test #endif // _GLIBCXX_TESTSUITE_ALLOCATOR_H