j0.go 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427
  1. // Copyright 2010 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. package math
  5. /*
  6. Bessel function of the first and second kinds of order zero.
  7. */
  8. // The original C code and the long comment below are
  9. // from FreeBSD's /usr/src/lib/msun/src/e_j0.c and
  10. // came with this notice. The go code is a simplified
  11. // version of the original C.
  12. //
  13. // ====================================================
  14. // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  15. //
  16. // Developed at SunPro, a Sun Microsystems, Inc. business.
  17. // Permission to use, copy, modify, and distribute this
  18. // software is freely granted, provided that this notice
  19. // is preserved.
  20. // ====================================================
  21. //
  22. // __ieee754_j0(x), __ieee754_y0(x)
  23. // Bessel function of the first and second kinds of order zero.
  24. // Method -- j0(x):
  25. // 1. For tiny x, we use j0(x) = 1 - x**2/4 + x**4/64 - ...
  26. // 2. Reduce x to |x| since j0(x)=j0(-x), and
  27. // for x in (0,2)
  28. // j0(x) = 1-z/4+ z**2*R0/S0, where z = x*x;
  29. // (precision: |j0-1+z/4-z**2R0/S0 |<2**-63.67 )
  30. // for x in (2,inf)
  31. // j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)-q0(x)*sin(x0))
  32. // where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
  33. // as follow:
  34. // cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
  35. // = 1/sqrt(2) * (cos(x) + sin(x))
  36. // sin(x0) = sin(x)cos(pi/4)-cos(x)sin(pi/4)
  37. // = 1/sqrt(2) * (sin(x) - cos(x))
  38. // (To avoid cancellation, use
  39. // sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
  40. // to compute the worse one.)
  41. //
  42. // 3 Special cases
  43. // j0(nan)= nan
  44. // j0(0) = 1
  45. // j0(inf) = 0
  46. //
  47. // Method -- y0(x):
  48. // 1. For x<2.
  49. // Since
  50. // y0(x) = 2/pi*(j0(x)*(ln(x/2)+Euler) + x**2/4 - ...)
  51. // therefore y0(x)-2/pi*j0(x)*ln(x) is an even function.
  52. // We use the following function to approximate y0,
  53. // y0(x) = U(z)/V(z) + (2/pi)*(j0(x)*ln(x)), z= x**2
  54. // where
  55. // U(z) = u00 + u01*z + ... + u06*z**6
  56. // V(z) = 1 + v01*z + ... + v04*z**4
  57. // with absolute approximation error bounded by 2**-72.
  58. // Note: For tiny x, U/V = u0 and j0(x)~1, hence
  59. // y0(tiny) = u0 + (2/pi)*ln(tiny), (choose tiny<2**-27)
  60. // 2. For x>=2.
  61. // y0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x0)+q0(x)*sin(x0))
  62. // where x0 = x-pi/4. It is better to compute sin(x0),cos(x0)
  63. // by the method mentioned above.
  64. // 3. Special cases: y0(0)=-inf, y0(x<0)=NaN, y0(inf)=0.
  65. //
  66. // J0 returns the order-zero Bessel function of the first kind.
  67. //
  68. // Special cases are:
  69. // J0(±Inf) = 0
  70. // J0(0) = 1
  71. // J0(NaN) = NaN
  72. func J0(x float64) float64 {
  73. const (
  74. Huge = 1e300
  75. TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
  76. TwoM13 = 1.0 / (1 << 13) // 2**-13 0x3f20000000000000
  77. Two129 = 1 << 129 // 2**129 0x4800000000000000
  78. // R0/S0 on [0, 2]
  79. R02 = 1.56249999999999947958e-02 // 0x3F8FFFFFFFFFFFFD
  80. R03 = -1.89979294238854721751e-04 // 0xBF28E6A5B61AC6E9
  81. R04 = 1.82954049532700665670e-06 // 0x3EBEB1D10C503919
  82. R05 = -4.61832688532103189199e-09 // 0xBE33D5E773D63FCE
  83. S01 = 1.56191029464890010492e-02 // 0x3F8FFCE882C8C2A4
  84. S02 = 1.16926784663337450260e-04 // 0x3F1EA6D2DD57DBF4
  85. S03 = 5.13546550207318111446e-07 // 0x3EA13B54CE84D5A9
  86. S04 = 1.16614003333790000205e-09 // 0x3E1408BCF4745D8F
  87. )
  88. // special cases
  89. switch {
  90. case IsNaN(x):
  91. return x
  92. case IsInf(x, 0):
  93. return 0
  94. case x == 0:
  95. return 1
  96. }
  97. x = Abs(x)
  98. if x >= 2 {
  99. s, c := Sincos(x)
  100. ss := s - c
  101. cc := s + c
  102. // make sure x+x does not overflow
  103. if x < MaxFloat64/2 {
  104. z := -Cos(x + x)
  105. if s*c < 0 {
  106. cc = z / ss
  107. } else {
  108. ss = z / cc
  109. }
  110. }
  111. // j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
  112. // y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
  113. var z float64
  114. if x > Two129 { // |x| > ~6.8056e+38
  115. z = (1 / SqrtPi) * cc / Sqrt(x)
  116. } else {
  117. u := pzero(x)
  118. v := qzero(x)
  119. z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x)
  120. }
  121. return z // |x| >= 2.0
  122. }
  123. if x < TwoM13 { // |x| < ~1.2207e-4
  124. if x < TwoM27 {
  125. return 1 // |x| < ~7.4506e-9
  126. }
  127. return 1 - 0.25*x*x // ~7.4506e-9 < |x| < ~1.2207e-4
  128. }
  129. z := x * x
  130. r := z * (R02 + z*(R03+z*(R04+z*R05)))
  131. s := 1 + z*(S01+z*(S02+z*(S03+z*S04)))
  132. if x < 1 {
  133. return 1 + z*(-0.25+(r/s)) // |x| < 1.00
  134. }
  135. u := 0.5 * x
  136. return (1+u)*(1-u) + z*(r/s) // 1.0 < |x| < 2.0
  137. }
  138. // Y0 returns the order-zero Bessel function of the second kind.
  139. //
  140. // Special cases are:
  141. // Y0(+Inf) = 0
  142. // Y0(0) = -Inf
  143. // Y0(x < 0) = NaN
  144. // Y0(NaN) = NaN
  145. func Y0(x float64) float64 {
  146. const (
  147. TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
  148. Two129 = 1 << 129 // 2**129 0x4800000000000000
  149. U00 = -7.38042951086872317523e-02 // 0xBFB2E4D699CBD01F
  150. U01 = 1.76666452509181115538e-01 // 0x3FC69D019DE9E3FC
  151. U02 = -1.38185671945596898896e-02 // 0xBF8C4CE8B16CFA97
  152. U03 = 3.47453432093683650238e-04 // 0x3F36C54D20B29B6B
  153. U04 = -3.81407053724364161125e-06 // 0xBECFFEA773D25CAD
  154. U05 = 1.95590137035022920206e-08 // 0x3E5500573B4EABD4
  155. U06 = -3.98205194132103398453e-11 // 0xBDC5E43D693FB3C8
  156. V01 = 1.27304834834123699328e-02 // 0x3F8A127091C9C71A
  157. V02 = 7.60068627350353253702e-05 // 0x3F13ECBBF578C6C1
  158. V03 = 2.59150851840457805467e-07 // 0x3E91642D7FF202FD
  159. V04 = 4.41110311332675467403e-10 // 0x3DFE50183BD6D9EF
  160. )
  161. // special cases
  162. switch {
  163. case x < 0 || IsNaN(x):
  164. return NaN()
  165. case IsInf(x, 1):
  166. return 0
  167. case x == 0:
  168. return Inf(-1)
  169. }
  170. if x >= 2 { // |x| >= 2.0
  171. // y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x0)+q0(x)*cos(x0))
  172. // where x0 = x-pi/4
  173. // Better formula:
  174. // cos(x0) = cos(x)cos(pi/4)+sin(x)sin(pi/4)
  175. // = 1/sqrt(2) * (sin(x) + cos(x))
  176. // sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
  177. // = 1/sqrt(2) * (sin(x) - cos(x))
  178. // To avoid cancellation, use
  179. // sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
  180. // to compute the worse one.
  181. s, c := Sincos(x)
  182. ss := s - c
  183. cc := s + c
  184. // j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
  185. // y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
  186. // make sure x+x does not overflow
  187. if x < MaxFloat64/2 {
  188. z := -Cos(x + x)
  189. if s*c < 0 {
  190. cc = z / ss
  191. } else {
  192. ss = z / cc
  193. }
  194. }
  195. var z float64
  196. if x > Two129 { // |x| > ~6.8056e+38
  197. z = (1 / SqrtPi) * ss / Sqrt(x)
  198. } else {
  199. u := pzero(x)
  200. v := qzero(x)
  201. z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x)
  202. }
  203. return z // |x| >= 2.0
  204. }
  205. if x <= TwoM27 {
  206. return U00 + (2/Pi)*Log(x) // |x| < ~7.4506e-9
  207. }
  208. z := x * x
  209. u := U00 + z*(U01+z*(U02+z*(U03+z*(U04+z*(U05+z*U06)))))
  210. v := 1 + z*(V01+z*(V02+z*(V03+z*V04)))
  211. return u/v + (2/Pi)*J0(x)*Log(x) // ~7.4506e-9 < |x| < 2.0
  212. }
  213. // The asymptotic expansions of pzero is
  214. // 1 - 9/128 s**2 + 11025/98304 s**4 - ..., where s = 1/x.
  215. // For x >= 2, We approximate pzero by
  216. // pzero(x) = 1 + (R/S)
  217. // where R = pR0 + pR1*s**2 + pR2*s**4 + ... + pR5*s**10
  218. // S = 1 + pS0*s**2 + ... + pS4*s**10
  219. // and
  220. // | pzero(x)-1-R/S | <= 2 ** ( -60.26)
  221. // for x in [inf, 8]=1/[0,0.125]
  222. var p0R8 = [6]float64{
  223. 0.00000000000000000000e+00, // 0x0000000000000000
  224. -7.03124999999900357484e-02, // 0xBFB1FFFFFFFFFD32
  225. -8.08167041275349795626e+00, // 0xC02029D0B44FA779
  226. -2.57063105679704847262e+02, // 0xC07011027B19E863
  227. -2.48521641009428822144e+03, // 0xC0A36A6ECD4DCAFC
  228. -5.25304380490729545272e+03, // 0xC0B4850B36CC643D
  229. }
  230. var p0S8 = [5]float64{
  231. 1.16534364619668181717e+02, // 0x405D223307A96751
  232. 3.83374475364121826715e+03, // 0x40ADF37D50596938
  233. 4.05978572648472545552e+04, // 0x40E3D2BB6EB6B05F
  234. 1.16752972564375915681e+05, // 0x40FC810F8F9FA9BD
  235. 4.76277284146730962675e+04, // 0x40E741774F2C49DC
  236. }
  237. // for x in [8,4.5454]=1/[0.125,0.22001]
  238. var p0R5 = [6]float64{
  239. -1.14125464691894502584e-11, // 0xBDA918B147E495CC
  240. -7.03124940873599280078e-02, // 0xBFB1FFFFE69AFBC6
  241. -4.15961064470587782438e+00, // 0xC010A370F90C6BBF
  242. -6.76747652265167261021e+01, // 0xC050EB2F5A7D1783
  243. -3.31231299649172967747e+02, // 0xC074B3B36742CC63
  244. -3.46433388365604912451e+02, // 0xC075A6EF28A38BD7
  245. }
  246. var p0S5 = [5]float64{
  247. 6.07539382692300335975e+01, // 0x404E60810C98C5DE
  248. 1.05125230595704579173e+03, // 0x40906D025C7E2864
  249. 5.97897094333855784498e+03, // 0x40B75AF88FBE1D60
  250. 9.62544514357774460223e+03, // 0x40C2CCB8FA76FA38
  251. 2.40605815922939109441e+03, // 0x40A2CC1DC70BE864
  252. }
  253. // for x in [4.547,2.8571]=1/[0.2199,0.35001]
  254. var p0R3 = [6]float64{
  255. -2.54704601771951915620e-09, // 0xBE25E1036FE1AA86
  256. -7.03119616381481654654e-02, // 0xBFB1FFF6F7C0E24B
  257. -2.40903221549529611423e+00, // 0xC00345B2AEA48074
  258. -2.19659774734883086467e+01, // 0xC035F74A4CB94E14
  259. -5.80791704701737572236e+01, // 0xC04D0A22420A1A45
  260. -3.14479470594888503854e+01, // 0xC03F72ACA892D80F
  261. }
  262. var p0S3 = [5]float64{
  263. 3.58560338055209726349e+01, // 0x4041ED9284077DD3
  264. 3.61513983050303863820e+02, // 0x40769839464A7C0E
  265. 1.19360783792111533330e+03, // 0x4092A66E6D1061D6
  266. 1.12799679856907414432e+03, // 0x40919FFCB8C39B7E
  267. 1.73580930813335754692e+02, // 0x4065B296FC379081
  268. }
  269. // for x in [2.8570,2]=1/[0.3499,0.5]
  270. var p0R2 = [6]float64{
  271. -8.87534333032526411254e-08, // 0xBE77D316E927026D
  272. -7.03030995483624743247e-02, // 0xBFB1FF62495E1E42
  273. -1.45073846780952986357e+00, // 0xBFF736398A24A843
  274. -7.63569613823527770791e+00, // 0xC01E8AF3EDAFA7F3
  275. -1.11931668860356747786e+01, // 0xC02662E6C5246303
  276. -3.23364579351335335033e+00, // 0xC009DE81AF8FE70F
  277. }
  278. var p0S2 = [5]float64{
  279. 2.22202997532088808441e+01, // 0x40363865908B5959
  280. 1.36206794218215208048e+02, // 0x4061069E0EE8878F
  281. 2.70470278658083486789e+02, // 0x4070E78642EA079B
  282. 1.53875394208320329881e+02, // 0x40633C033AB6FAFF
  283. 1.46576176948256193810e+01, // 0x402D50B344391809
  284. }
  285. func pzero(x float64) float64 {
  286. var p *[6]float64
  287. var q *[5]float64
  288. if x >= 8 {
  289. p = &p0R8
  290. q = &p0S8
  291. } else if x >= 4.5454 {
  292. p = &p0R5
  293. q = &p0S5
  294. } else if x >= 2.8571 {
  295. p = &p0R3
  296. q = &p0S3
  297. } else if x >= 2 {
  298. p = &p0R2
  299. q = &p0S2
  300. }
  301. z := 1 / (x * x)
  302. r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
  303. s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))))
  304. return 1 + r/s
  305. }
  306. // For x >= 8, the asymptotic expansions of qzero is
  307. // -1/8 s + 75/1024 s**3 - ..., where s = 1/x.
  308. // We approximate pzero by
  309. // qzero(x) = s*(-1.25 + (R/S))
  310. // where R = qR0 + qR1*s**2 + qR2*s**4 + ... + qR5*s**10
  311. // S = 1 + qS0*s**2 + ... + qS5*s**12
  312. // and
  313. // | qzero(x)/s +1.25-R/S | <= 2**(-61.22)
  314. // for x in [inf, 8]=1/[0,0.125]
  315. var q0R8 = [6]float64{
  316. 0.00000000000000000000e+00, // 0x0000000000000000
  317. 7.32421874999935051953e-02, // 0x3FB2BFFFFFFFFE2C
  318. 1.17682064682252693899e+01, // 0x402789525BB334D6
  319. 5.57673380256401856059e+02, // 0x40816D6315301825
  320. 8.85919720756468632317e+03, // 0x40C14D993E18F46D
  321. 3.70146267776887834771e+04, // 0x40E212D40E901566
  322. }
  323. var q0S8 = [6]float64{
  324. 1.63776026895689824414e+02, // 0x406478D5365B39BC
  325. 8.09834494656449805916e+03, // 0x40BFA2584E6B0563
  326. 1.42538291419120476348e+05, // 0x4101665254D38C3F
  327. 8.03309257119514397345e+05, // 0x412883DA83A52B43
  328. 8.40501579819060512818e+05, // 0x4129A66B28DE0B3D
  329. -3.43899293537866615225e+05, // 0xC114FD6D2C9530C5
  330. }
  331. // for x in [8,4.5454]=1/[0.125,0.22001]
  332. var q0R5 = [6]float64{
  333. 1.84085963594515531381e-11, // 0x3DB43D8F29CC8CD9
  334. 7.32421766612684765896e-02, // 0x3FB2BFFFD172B04C
  335. 5.83563508962056953777e+00, // 0x401757B0B9953DD3
  336. 1.35111577286449829671e+02, // 0x4060E3920A8788E9
  337. 1.02724376596164097464e+03, // 0x40900CF99DC8C481
  338. 1.98997785864605384631e+03, // 0x409F17E953C6E3A6
  339. }
  340. var q0S5 = [6]float64{
  341. 8.27766102236537761883e+01, // 0x4054B1B3FB5E1543
  342. 2.07781416421392987104e+03, // 0x40A03BA0DA21C0CE
  343. 1.88472887785718085070e+04, // 0x40D267D27B591E6D
  344. 5.67511122894947329769e+04, // 0x40EBB5E397E02372
  345. 3.59767538425114471465e+04, // 0x40E191181F7A54A0
  346. -5.35434275601944773371e+03, // 0xC0B4EA57BEDBC609
  347. }
  348. // for x in [4.547,2.8571]=1/[0.2199,0.35001]
  349. var q0R3 = [6]float64{
  350. 4.37741014089738620906e-09, // 0x3E32CD036ADECB82
  351. 7.32411180042911447163e-02, // 0x3FB2BFEE0E8D0842
  352. 3.34423137516170720929e+00, // 0x400AC0FC61149CF5
  353. 4.26218440745412650017e+01, // 0x40454F98962DAEDD
  354. 1.70808091340565596283e+02, // 0x406559DBE25EFD1F
  355. 1.66733948696651168575e+02, // 0x4064D77C81FA21E0
  356. }
  357. var q0S3 = [6]float64{
  358. 4.87588729724587182091e+01, // 0x40486122BFE343A6
  359. 7.09689221056606015736e+02, // 0x40862D8386544EB3
  360. 3.70414822620111362994e+03, // 0x40ACF04BE44DFC63
  361. 6.46042516752568917582e+03, // 0x40B93C6CD7C76A28
  362. 2.51633368920368957333e+03, // 0x40A3A8AAD94FB1C0
  363. -1.49247451836156386662e+02, // 0xC062A7EB201CF40F
  364. }
  365. // for x in [2.8570,2]=1/[0.3499,0.5]
  366. var q0R2 = [6]float64{
  367. 1.50444444886983272379e-07, // 0x3E84313B54F76BDB
  368. 7.32234265963079278272e-02, // 0x3FB2BEC53E883E34
  369. 1.99819174093815998816e+00, // 0x3FFFF897E727779C
  370. 1.44956029347885735348e+01, // 0x402CFDBFAAF96FE5
  371. 3.16662317504781540833e+01, // 0x403FAA8E29FBDC4A
  372. 1.62527075710929267416e+01, // 0x403040B171814BB4
  373. }
  374. var q0S2 = [6]float64{
  375. 3.03655848355219184498e+01, // 0x403E5D96F7C07AED
  376. 2.69348118608049844624e+02, // 0x4070D591E4D14B40
  377. 8.44783757595320139444e+02, // 0x408A664522B3BF22
  378. 8.82935845112488550512e+02, // 0x408B977C9C5CC214
  379. 2.12666388511798828631e+02, // 0x406A95530E001365
  380. -5.31095493882666946917e+00, // 0xC0153E6AF8B32931
  381. }
  382. func qzero(x float64) float64 {
  383. var p, q *[6]float64
  384. if x >= 8 {
  385. p = &q0R8
  386. q = &q0S8
  387. } else if x >= 4.5454 {
  388. p = &q0R5
  389. q = &q0S5
  390. } else if x >= 2.8571 {
  391. p = &q0R3
  392. q = &q0S3
  393. } else if x >= 2 {
  394. p = &q0R2
  395. q = &q0S2
  396. }
  397. z := 1 / (x * x)
  398. r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
  399. s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))))
  400. return (-0.125 + r/s) / x
  401. }