j1.go 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422
  1. // Copyright 2010 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. package math
  5. /*
  6. Bessel function of the first and second kinds of order one.
  7. */
  8. // The original C code and the long comment below are
  9. // from FreeBSD's /usr/src/lib/msun/src/e_j1.c and
  10. // came with this notice. The go code is a simplified
  11. // version of the original C.
  12. //
  13. // ====================================================
  14. // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  15. //
  16. // Developed at SunPro, a Sun Microsystems, Inc. business.
  17. // Permission to use, copy, modify, and distribute this
  18. // software is freely granted, provided that this notice
  19. // is preserved.
  20. // ====================================================
  21. //
  22. // __ieee754_j1(x), __ieee754_y1(x)
  23. // Bessel function of the first and second kinds of order one.
  24. // Method -- j1(x):
  25. // 1. For tiny x, we use j1(x) = x/2 - x**3/16 + x**5/384 - ...
  26. // 2. Reduce x to |x| since j1(x)=-j1(-x), and
  27. // for x in (0,2)
  28. // j1(x) = x/2 + x*z*R0/S0, where z = x*x;
  29. // (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
  30. // for x in (2,inf)
  31. // j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
  32. // y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
  33. // where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
  34. // as follow:
  35. // cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
  36. // = 1/sqrt(2) * (sin(x) - cos(x))
  37. // sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
  38. // = -1/sqrt(2) * (sin(x) + cos(x))
  39. // (To avoid cancellation, use
  40. // sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
  41. // to compute the worse one.)
  42. //
  43. // 3 Special cases
  44. // j1(nan)= nan
  45. // j1(0) = 0
  46. // j1(inf) = 0
  47. //
  48. // Method -- y1(x):
  49. // 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
  50. // 2. For x<2.
  51. // Since
  52. // y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x**3-...)
  53. // therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
  54. // We use the following function to approximate y1,
  55. // y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x**2
  56. // where for x in [0,2] (abs err less than 2**-65.89)
  57. // U(z) = U0[0] + U0[1]*z + ... + U0[4]*z**4
  58. // V(z) = 1 + v0[0]*z + ... + v0[4]*z**5
  59. // Note: For tiny x, 1/x dominate y1 and hence
  60. // y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
  61. // 3. For x>=2.
  62. // y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
  63. // where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
  64. // by method mentioned above.
  65. // J1 returns the order-one Bessel function of the first kind.
  66. //
  67. // Special cases are:
  68. // J1(±Inf) = 0
  69. // J1(NaN) = NaN
  70. func J1(x float64) float64 {
  71. const (
  72. TwoM27 = 1.0 / (1 << 27) // 2**-27 0x3e40000000000000
  73. Two129 = 1 << 129 // 2**129 0x4800000000000000
  74. // R0/S0 on [0, 2]
  75. R00 = -6.25000000000000000000e-02 // 0xBFB0000000000000
  76. R01 = 1.40705666955189706048e-03 // 0x3F570D9F98472C61
  77. R02 = -1.59955631084035597520e-05 // 0xBEF0C5C6BA169668
  78. R03 = 4.96727999609584448412e-08 // 0x3E6AAAFA46CA0BD9
  79. S01 = 1.91537599538363460805e-02 // 0x3F939D0B12637E53
  80. S02 = 1.85946785588630915560e-04 // 0x3F285F56B9CDF664
  81. S03 = 1.17718464042623683263e-06 // 0x3EB3BFF8333F8498
  82. S04 = 5.04636257076217042715e-09 // 0x3E35AC88C97DFF2C
  83. S05 = 1.23542274426137913908e-11 // 0x3DAB2ACFCFB97ED8
  84. )
  85. // special cases
  86. switch {
  87. case IsNaN(x):
  88. return x
  89. case IsInf(x, 0) || x == 0:
  90. return 0
  91. }
  92. sign := false
  93. if x < 0 {
  94. x = -x
  95. sign = true
  96. }
  97. if x >= 2 {
  98. s, c := Sincos(x)
  99. ss := -s - c
  100. cc := s - c
  101. // make sure x+x does not overflow
  102. if x < MaxFloat64/2 {
  103. z := Cos(x + x)
  104. if s*c > 0 {
  105. cc = z / ss
  106. } else {
  107. ss = z / cc
  108. }
  109. }
  110. // j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
  111. // y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
  112. var z float64
  113. if x > Two129 {
  114. z = (1 / SqrtPi) * cc / Sqrt(x)
  115. } else {
  116. u := pone(x)
  117. v := qone(x)
  118. z = (1 / SqrtPi) * (u*cc - v*ss) / Sqrt(x)
  119. }
  120. if sign {
  121. return -z
  122. }
  123. return z
  124. }
  125. if x < TwoM27 { // |x|<2**-27
  126. return 0.5 * x // inexact if x!=0 necessary
  127. }
  128. z := x * x
  129. r := z * (R00 + z*(R01+z*(R02+z*R03)))
  130. s := 1.0 + z*(S01+z*(S02+z*(S03+z*(S04+z*S05))))
  131. r *= x
  132. z = 0.5*x + r/s
  133. if sign {
  134. return -z
  135. }
  136. return z
  137. }
  138. // Y1 returns the order-one Bessel function of the second kind.
  139. //
  140. // Special cases are:
  141. // Y1(+Inf) = 0
  142. // Y1(0) = -Inf
  143. // Y1(x < 0) = NaN
  144. // Y1(NaN) = NaN
  145. func Y1(x float64) float64 {
  146. const (
  147. TwoM54 = 1.0 / (1 << 54) // 2**-54 0x3c90000000000000
  148. Two129 = 1 << 129 // 2**129 0x4800000000000000
  149. U00 = -1.96057090646238940668e-01 // 0xBFC91866143CBC8A
  150. U01 = 5.04438716639811282616e-02 // 0x3FA9D3C776292CD1
  151. U02 = -1.91256895875763547298e-03 // 0xBF5F55E54844F50F
  152. U03 = 2.35252600561610495928e-05 // 0x3EF8AB038FA6B88E
  153. U04 = -9.19099158039878874504e-08 // 0xBE78AC00569105B8
  154. V00 = 1.99167318236649903973e-02 // 0x3F94650D3F4DA9F0
  155. V01 = 2.02552581025135171496e-04 // 0x3F2A8C896C257764
  156. V02 = 1.35608801097516229404e-06 // 0x3EB6C05A894E8CA6
  157. V03 = 6.22741452364621501295e-09 // 0x3E3ABF1D5BA69A86
  158. V04 = 1.66559246207992079114e-11 // 0x3DB25039DACA772A
  159. )
  160. // special cases
  161. switch {
  162. case x < 0 || IsNaN(x):
  163. return NaN()
  164. case IsInf(x, 1):
  165. return 0
  166. case x == 0:
  167. return Inf(-1)
  168. }
  169. if x >= 2 {
  170. s, c := Sincos(x)
  171. ss := -s - c
  172. cc := s - c
  173. // make sure x+x does not overflow
  174. if x < MaxFloat64/2 {
  175. z := Cos(x + x)
  176. if s*c > 0 {
  177. cc = z / ss
  178. } else {
  179. ss = z / cc
  180. }
  181. }
  182. // y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
  183. // where x0 = x-3pi/4
  184. // Better formula:
  185. // cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
  186. // = 1/sqrt(2) * (sin(x) - cos(x))
  187. // sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
  188. // = -1/sqrt(2) * (cos(x) + sin(x))
  189. // To avoid cancellation, use
  190. // sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
  191. // to compute the worse one.
  192. var z float64
  193. if x > Two129 {
  194. z = (1 / SqrtPi) * ss / Sqrt(x)
  195. } else {
  196. u := pone(x)
  197. v := qone(x)
  198. z = (1 / SqrtPi) * (u*ss + v*cc) / Sqrt(x)
  199. }
  200. return z
  201. }
  202. if x <= TwoM54 { // x < 2**-54
  203. return -(2 / Pi) / x
  204. }
  205. z := x * x
  206. u := U00 + z*(U01+z*(U02+z*(U03+z*U04)))
  207. v := 1 + z*(V00+z*(V01+z*(V02+z*(V03+z*V04))))
  208. return x*(u/v) + (2/Pi)*(J1(x)*Log(x)-1/x)
  209. }
  210. // For x >= 8, the asymptotic expansions of pone is
  211. // 1 + 15/128 s**2 - 4725/2**15 s**4 - ..., where s = 1/x.
  212. // We approximate pone by
  213. // pone(x) = 1 + (R/S)
  214. // where R = pr0 + pr1*s**2 + pr2*s**4 + ... + pr5*s**10
  215. // S = 1 + ps0*s**2 + ... + ps4*s**10
  216. // and
  217. // | pone(x)-1-R/S | <= 2**(-60.06)
  218. // for x in [inf, 8]=1/[0,0.125]
  219. var p1R8 = [6]float64{
  220. 0.00000000000000000000e+00, // 0x0000000000000000
  221. 1.17187499999988647970e-01, // 0x3FBDFFFFFFFFFCCE
  222. 1.32394806593073575129e+01, // 0x402A7A9D357F7FCE
  223. 4.12051854307378562225e+02, // 0x4079C0D4652EA590
  224. 3.87474538913960532227e+03, // 0x40AE457DA3A532CC
  225. 7.91447954031891731574e+03, // 0x40BEEA7AC32782DD
  226. }
  227. var p1S8 = [5]float64{
  228. 1.14207370375678408436e+02, // 0x405C8D458E656CAC
  229. 3.65093083420853463394e+03, // 0x40AC85DC964D274F
  230. 3.69562060269033463555e+04, // 0x40E20B8697C5BB7F
  231. 9.76027935934950801311e+04, // 0x40F7D42CB28F17BB
  232. 3.08042720627888811578e+04, // 0x40DE1511697A0B2D
  233. }
  234. // for x in [8,4.5454] = 1/[0.125,0.22001]
  235. var p1R5 = [6]float64{
  236. 1.31990519556243522749e-11, // 0x3DAD0667DAE1CA7D
  237. 1.17187493190614097638e-01, // 0x3FBDFFFFE2C10043
  238. 6.80275127868432871736e+00, // 0x401B36046E6315E3
  239. 1.08308182990189109773e+02, // 0x405B13B9452602ED
  240. 5.17636139533199752805e+02, // 0x40802D16D052D649
  241. 5.28715201363337541807e+02, // 0x408085B8BB7E0CB7
  242. }
  243. var p1S5 = [5]float64{
  244. 5.92805987221131331921e+01, // 0x404DA3EAA8AF633D
  245. 9.91401418733614377743e+02, // 0x408EFB361B066701
  246. 5.35326695291487976647e+03, // 0x40B4E9445706B6FB
  247. 7.84469031749551231769e+03, // 0x40BEA4B0B8A5BB15
  248. 1.50404688810361062679e+03, // 0x40978030036F5E51
  249. }
  250. // for x in[4.5453,2.8571] = 1/[0.2199,0.35001]
  251. var p1R3 = [6]float64{
  252. 3.02503916137373618024e-09, // 0x3E29FC21A7AD9EDD
  253. 1.17186865567253592491e-01, // 0x3FBDFFF55B21D17B
  254. 3.93297750033315640650e+00, // 0x400F76BCE85EAD8A
  255. 3.51194035591636932736e+01, // 0x40418F489DA6D129
  256. 9.10550110750781271918e+01, // 0x4056C3854D2C1837
  257. 4.85590685197364919645e+01, // 0x4048478F8EA83EE5
  258. }
  259. var p1S3 = [5]float64{
  260. 3.47913095001251519989e+01, // 0x40416549A134069C
  261. 3.36762458747825746741e+02, // 0x40750C3307F1A75F
  262. 1.04687139975775130551e+03, // 0x40905B7C5037D523
  263. 8.90811346398256432622e+02, // 0x408BD67DA32E31E9
  264. 1.03787932439639277504e+02, // 0x4059F26D7C2EED53
  265. }
  266. // for x in [2.8570,2] = 1/[0.3499,0.5]
  267. var p1R2 = [6]float64{
  268. 1.07710830106873743082e-07, // 0x3E7CE9D4F65544F4
  269. 1.17176219462683348094e-01, // 0x3FBDFF42BE760D83
  270. 2.36851496667608785174e+00, // 0x4002F2B7F98FAEC0
  271. 1.22426109148261232917e+01, // 0x40287C377F71A964
  272. 1.76939711271687727390e+01, // 0x4031B1A8177F8EE2
  273. 5.07352312588818499250e+00, // 0x40144B49A574C1FE
  274. }
  275. var p1S2 = [5]float64{
  276. 2.14364859363821409488e+01, // 0x40356FBD8AD5ECDC
  277. 1.25290227168402751090e+02, // 0x405F529314F92CD5
  278. 2.32276469057162813669e+02, // 0x406D08D8D5A2DBD9
  279. 1.17679373287147100768e+02, // 0x405D6B7ADA1884A9
  280. 8.36463893371618283368e+00, // 0x4020BAB1F44E5192
  281. }
  282. func pone(x float64) float64 {
  283. var p *[6]float64
  284. var q *[5]float64
  285. if x >= 8 {
  286. p = &p1R8
  287. q = &p1S8
  288. } else if x >= 4.5454 {
  289. p = &p1R5
  290. q = &p1S5
  291. } else if x >= 2.8571 {
  292. p = &p1R3
  293. q = &p1S3
  294. } else if x >= 2 {
  295. p = &p1R2
  296. q = &p1S2
  297. }
  298. z := 1 / (x * x)
  299. r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
  300. s := 1.0 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))))
  301. return 1 + r/s
  302. }
  303. // For x >= 8, the asymptotic expansions of qone is
  304. // 3/8 s - 105/1024 s**3 - ..., where s = 1/x.
  305. // We approximate qone by
  306. // qone(x) = s*(0.375 + (R/S))
  307. // where R = qr1*s**2 + qr2*s**4 + ... + qr5*s**10
  308. // S = 1 + qs1*s**2 + ... + qs6*s**12
  309. // and
  310. // | qone(x)/s -0.375-R/S | <= 2**(-61.13)
  311. // for x in [inf, 8] = 1/[0,0.125]
  312. var q1R8 = [6]float64{
  313. 0.00000000000000000000e+00, // 0x0000000000000000
  314. -1.02539062499992714161e-01, // 0xBFBA3FFFFFFFFDF3
  315. -1.62717534544589987888e+01, // 0xC0304591A26779F7
  316. -7.59601722513950107896e+02, // 0xC087BCD053E4B576
  317. -1.18498066702429587167e+04, // 0xC0C724E740F87415
  318. -4.84385124285750353010e+04, // 0xC0E7A6D065D09C6A
  319. }
  320. var q1S8 = [6]float64{
  321. 1.61395369700722909556e+02, // 0x40642CA6DE5BCDE5
  322. 7.82538599923348465381e+03, // 0x40BE9162D0D88419
  323. 1.33875336287249578163e+05, // 0x4100579AB0B75E98
  324. 7.19657723683240939863e+05, // 0x4125F65372869C19
  325. 6.66601232617776375264e+05, // 0x412457D27719AD5C
  326. -2.94490264303834643215e+05, // 0xC111F9690EA5AA18
  327. }
  328. // for x in [8,4.5454] = 1/[0.125,0.22001]
  329. var q1R5 = [6]float64{
  330. -2.08979931141764104297e-11, // 0xBDB6FA431AA1A098
  331. -1.02539050241375426231e-01, // 0xBFBA3FFFCB597FEF
  332. -8.05644828123936029840e+00, // 0xC0201CE6CA03AD4B
  333. -1.83669607474888380239e+02, // 0xC066F56D6CA7B9B0
  334. -1.37319376065508163265e+03, // 0xC09574C66931734F
  335. -2.61244440453215656817e+03, // 0xC0A468E388FDA79D
  336. }
  337. var q1S5 = [6]float64{
  338. 8.12765501384335777857e+01, // 0x405451B2FF5A11B2
  339. 1.99179873460485964642e+03, // 0x409F1F31E77BF839
  340. 1.74684851924908907677e+04, // 0x40D10F1F0D64CE29
  341. 4.98514270910352279316e+04, // 0x40E8576DAABAD197
  342. 2.79480751638918118260e+04, // 0x40DB4B04CF7C364B
  343. -4.71918354795128470869e+03, // 0xC0B26F2EFCFFA004
  344. }
  345. // for x in [4.5454,2.8571] = 1/[0.2199,0.35001] ???
  346. var q1R3 = [6]float64{
  347. -5.07831226461766561369e-09, // 0xBE35CFA9D38FC84F
  348. -1.02537829820837089745e-01, // 0xBFBA3FEB51AEED54
  349. -4.61011581139473403113e+00, // 0xC01270C23302D9FF
  350. -5.78472216562783643212e+01, // 0xC04CEC71C25D16DA
  351. -2.28244540737631695038e+02, // 0xC06C87D34718D55F
  352. -2.19210128478909325622e+02, // 0xC06B66B95F5C1BF6
  353. }
  354. var q1S3 = [6]float64{
  355. 4.76651550323729509273e+01, // 0x4047D523CCD367E4
  356. 6.73865112676699709482e+02, // 0x40850EEBC031EE3E
  357. 3.38015286679526343505e+03, // 0x40AA684E448E7C9A
  358. 5.54772909720722782367e+03, // 0x40B5ABBAA61D54A6
  359. 1.90311919338810798763e+03, // 0x409DBC7A0DD4DF4B
  360. -1.35201191444307340817e+02, // 0xC060E670290A311F
  361. }
  362. // for x in [2.8570,2] = 1/[0.3499,0.5]
  363. var q1R2 = [6]float64{
  364. -1.78381727510958865572e-07, // 0xBE87F12644C626D2
  365. -1.02517042607985553460e-01, // 0xBFBA3E8E9148B010
  366. -2.75220568278187460720e+00, // 0xC006048469BB4EDA
  367. -1.96636162643703720221e+01, // 0xC033A9E2C168907F
  368. -4.23253133372830490089e+01, // 0xC04529A3DE104AAA
  369. -2.13719211703704061733e+01, // 0xC0355F3639CF6E52
  370. }
  371. var q1S2 = [6]float64{
  372. 2.95333629060523854548e+01, // 0x403D888A78AE64FF
  373. 2.52981549982190529136e+02, // 0x406F9F68DB821CBA
  374. 7.57502834868645436472e+02, // 0x4087AC05CE49A0F7
  375. 7.39393205320467245656e+02, // 0x40871B2548D4C029
  376. 1.55949003336666123687e+02, // 0x40637E5E3C3ED8D4
  377. -4.95949898822628210127e+00, // 0xC013D686E71BE86B
  378. }
  379. func qone(x float64) float64 {
  380. var p, q *[6]float64
  381. if x >= 8 {
  382. p = &q1R8
  383. q = &q1S8
  384. } else if x >= 4.5454 {
  385. p = &q1R5
  386. q = &q1S5
  387. } else if x >= 2.8571 {
  388. p = &q1R3
  389. q = &q1S3
  390. } else if x >= 2 {
  391. p = &q1R2
  392. q = &q1S2
  393. }
  394. z := 1 / (x * x)
  395. r := p[0] + z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))))
  396. s := 1 + z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))))
  397. return (0.375 + r/s) / x
  398. }